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Currently, neither built-in nor third-party support exists for computational fluid 
dynamics (CFD) post-processing techniques or the handling of common 
visualization file formats. This thesis presents a solution for visualizing massive-
scale polygonal CFD datasets in Unity. The viability of immersive massive-scale 
CFD post-processing in Unity was examined through a mixed-reality application 
developed around this solution utilizing near-state-of-the-art hardware and data 
from a rapid compression expansion machine simulation. The performance of the 
solution was measured through benchmarks and the functionality of the 
application was determined through hands-on testing. 

Multiple implemented optimizations are explored, including some improvements 
on approaches from the literature. These include the parallelization of multiple 
steps throughout the data pipeline and the use of a low-level rendering interface 
of Unity.  

The developed visualization solution achieves runtime data loading times ranging 
from 2.9 to 47.1 seconds resulting in pre-processed transient datasets ranging in 
size from 1.54 to 25.95 gigabytes. Basic post-processing techniques were 
successfully implemented in the developed application. In benchmarking, the 
application reached the headset’s optimal frame rate of 90 in static viewing of 
individual objects and averaged a frame rate of over 58 during transient 
playback. 
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Tällä hetkellä laskennallisen virtausdynamiikan (CFD) jälkikäsittelylle tai sen 
visualisoinnin yleisille tiedostomuodoille ei ole lainkaan pelimoottorien sisäistä 
eikä kolmannenkaan osapuolen tukea. Tässä opinnäytetyössä esitetään 
ratkaisu massiivisen mittakaavan CFD polygonimuotoisten aineistojen 
visualisointiin ja tämän päälle kehitetty sovellus näiden aineistojen 
jälkikäsittelyyn yhdistetyssä todellisuudessa (MR). Unityn mahdollisuuksia CFD-
jälkikäsittelyyn selvitettiin tutkimalla ratkaisun suorituskykyä ja jälkikäsittelyä 
sovellukseen onnistuneesti kehitettyjä toimintoja. Suorituskyvyn ja toimintojen 
toimivuuden vahvistamiseksi hyödynnettiin visualisaatio dataa oikeasta 
nopeasta puristus-laajennuskoneen (RCEM) simulaatiosta.  

Opinnäytetyön projektissa esitetään monta optimisaatiota, jotka osa ovat 
jatkokehitetty aiemmasta kirjallisuudesta. Optimisaatiot keskittyvät suuressa 
osassa datan prosessoinnin eri vaiheiden rinnakkaislaskeistamiseen ja Unityn 
matalan tason renderöinti rajapinnan hyödyntämiseen. 

Käytetyn visualisointidatan eri kappaleiden ajoaikainen lataus tai esiprosessointi 
mitattiin vaihtelevaksi 2.9 ja 47.1 sekunnin välillä, kun esiprosessoidun datan 
suuruus vaihteli välillä 1.54 ja 25.95 gigatavua tai miljardia tavua. Keskeiset 
jälkikäsittelyn toiminnot toteutettiin sovellukseen onnistuneesti. Suorituskyvyn 
mittauksissa sovellus ylsi MR-lasien optimaaliseen 90 ruutua sekunnissa 
nopeuteen staattisesti visualisaatiota tarkasteltaessa ja 58 keskiarvoon ajallisen 
visualisointiaineiston toiston päällä ollessa. 

 

Asiasanat: CFD-jälkikäsittely, massiivinen mittakaava, yhdistetty todellisuus, 
Unity-pelimoottori, visualisaatio 
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1 Introduction 

This thesis was written during a traineeship at the Technical Research Centre of 

Finland (VTT) as part of work in the VTT coordinated ‘Green Engine 

Computational Fluid Dynamics’ (GECFD) research project. The CFD simulation 

case for the evaluation of the developed solution is from Wärtsilä, a 

manufacturer and service provider of equipment in the marine and energy 

sectors and a participant in the GECFD project (1). In this project, a proof-of-

concept was developed to research the future of digital collaboration in CFD. 

The solution presented is the groundwork for enabling fast development of the 

collaboration features in the future. 

The research question, “Is immersive massive-scale CFD post-processing 

viable in a modern game engine” was answered through the development of a 

solution that enables CFD visualization. This was then utilized to develop an 

MR application with basic post-processing features to evaluate its viability 

through benchmarks and observed functionality. 

The phrase, “Mixed Reality” (MR) will describe the experience, as there is 

interaction between the physical and digital worlds. The difference between 

augmented reality and mixed reality is small. The distinction was made with 

Interaction Design Foundation’s definitions where they make the distinction from 

AR with the level of interaction present. Headset developer Varjo’s definition, “In 

Mixed Reality, virtual objects appear as a natural part of the real world, 

occluding behind real objects” is also considered. 

Massive scale refers less to the “physical” scale of the simulation and more to 

the amount of data that needs to be processed. In practice and in the context of 

this thesis, this means high-resolution transient simulation results that can 

contain anywhere from gigabytes to tens of gigabytes of data (billions of bytes).  
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2 Literature review 

In this chapter, the motivations and approaches chosen for the study are 

established through exploring recent literature on the topic. 

CFD post-processing is the act of analyzing simulation results with purpose-built 

software to obtain insights into the behavior of fluids in different environments 

(2). This can involve slicing the 3D simulation domain to visualize the results on 

a plane cutting into the geometry, which might provide insights that were not 

visible with the original simulation geometry (Figure 1). However, the most basic 

form of post-processing can be normalizing the magnitude values of a 

simulation output and mapping them onto a color gradient, then displaying the 

resulting color on the original simulation geometry (Figure 2).  

 

Figure 1. Temperature visualized on a slice of RCEM cylinder internal space 
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Figure 2. ParaView gradient selection highlighted 

2.1 Background on CFD post-processing in a game engine 

In the paper, CFD post-processing in Unity3D Berger and Christie (3) explore 

the use cases for game engine visualizations for its ease of use compared to 

more conventional post-processing software like ParaView. They found this 

approach can help non-expert stakeholders make informed decisions based on 

representative and qualitative visualizations.  

There are many ways one can connect CFD simulation software to game 

engines for post-processing. The method used by Solmaz et al. (4) in their 

toolkit, Acrossim focuses on a cross-platform solution for converting raw CFD 

results into industry-standard formats, such as FBX. This approach is great for 

already post-processed models used during the application development, but is 

not as well suited, nor is it meant for runtime loading and post-processing of 

CFD data.  

One method for implementing dynamic post-processing inside Unity, used by 

Wheeler et al. (5), is the plugin; VTKUnity-Activiz, also known as Activiz.NET, 

which exposes Visualization Toolkit (VTK) functionality for Unity, but this has 

many limitations (6). This plugin is a C# wrapper for VTK’s C++ functions and 
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requires its own rendering context, in OpenGL, which makes the plugin feel 

poorly integrated and isolated. This limits projects utilizing it to using 

OpenGLCore as their graphics API, which consequently limits XR projects to 

using the Unity legacy VR support, which further limits the Unity version to the 

2019 releases (6). 

Weaknesses of the game engine post-processing approach are brought up by 

Solmaz et al. (7) as heavy processing needs for end-user devices and the need 

to implement the relevant post-processing algorithms from ground up to process 

CFD datasets. The programming of algorithms for pre-processing CFD data to 

game engine friendly formats remains a challenge and currently, there are no 

popular solutions or libraries available for this.  

This is what Wang et al. (8) did as they explored a highly integrated large-scale 

dynamic post-processing solution for Unity with promising results in the field of 

geotechnical engineering. Through optimizations in pre-processing and 

rendering they created a lightweight solution, called GIV (9). The 

implementation of this thesis utilizes many similar concepts used in GIV, 

applying them to more flexible topology, MR, and building on the rendering 

optimizations with Unity’s low-level mesh drawing functions. 

2.2 CFD simulation software 

For the CFD simulation software, OpenFOAM was used by Wärtsilä’s experts 

for exporting the visualization data utilized in this study as it is in large part used 

in the GECFD research project. 

2.3 Choice of CFD post-processing software 

OpenFOAM comes paired with ParaView, a popular open-source visualization 

software (10). This is how CFD results are usually analyzed (11), in specialized 

software requiring near-expert if not expert knowledge. ParaView is a powerful 

and versatile tool for analyzing CFD simulation results, but its XR capabilities 

are limited. In the production build of ParaView, the collaboration feature that 
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enables others on the network to view the same visualization scene only works 

on Kitware’s servers, the research and development company behind the 

software (12). It is possible to self-host an instance of the collaboration server, 

but this requires the collaboration_server executable that might need to be built 

from source code. 

Extending existing features is possible as ParaView is open source but also 

challenging due to relatively poor documentation on the feature and having to 

work directly with low-level OpenXR or OpenVR standard application 

programming interfaces (API). This is in large contrast to game engines where 

software development kits (SDK) are used with a higher level of code 

abstraction which speeds up development.  

Game engines are built specifically for the quick development of interactive 3D 

applications (13), but CFD data processing and analysis functionality must be 

created from near ground up. Although popular game engines such as Unity 

and Unreal Engine have invested a lot into visualization, they mostly focus on 

architectural visualizations and computer-aided design (CAD) instead of CFD 

(14, 15). This still means that advanced rendering tasks are possible, with the 

help of low-level cross-platform interfaces, such as Unity’s Graphics interface 
(16).  

Unity was chosen as the game engine for this study based on personal 

preference. There is also a precedent for using Unity to visualize CFD results in 

MR (17) and to be capable of handling large-scale simulation data processing 

by Wang et al. (8). 

3 Methodology 

This thesis utilizes case study as the primary research method to explore the 

question: Is immersive massive-scale CFD post-processing viable within a 

modern game engine?  
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A solution is developed for the basic post-processing of polygonal CFD datasets 

utilizing a simple and widely supported file format. Using this solution a Unity-

based MR post-processing application is built to evaluate the capabilities of the 

solution with a real-world massive-scale CFD simulation case based on a rapid 

compression expansion machine (RCEM).  

In practice, “immersive” in this question refers to visualizing in extended reality 

(XR) environments. This is a part of the study as conventional post-processing 

software is not as well equipped for developing software for immersive 

environments and the promising benefits, they show in the field of visualization 

(18). An example of this could be for instance overlaying CFD simulation results 

on the physical object that serves as the counterpart to its digital twin in the 

simulation, providing insights quickly and with great real-world context.  

“Massive scale” in the context of the question defines going as close as 

possible to the limit of current state-of-the-art (SOTA) hardware as a goal. The 

immersive aspect in the case of the Varjo XR3 Focal Edition brings with it the 

cost of rendering three additional screens.  

3.1 Simulation case 

To evaluate the real-world capabilities of the software, simulated data from a 

rapid compression expansion machine (RCEM) was generated and exported for 

visualization in the simple binary VTK format. This is explored further in the 

chapters below. RCEM is a machine designed for chemical experimentation 

that can quickly compress a fuel/air mixture by pushing a piston into a cylinder 

and the resulting high temperatures and pressures initiate chemical reactions 

(19). The expansion in RCEM means that the machine can also pull the piston 

rapidly outwards to expand the gas. 

Iso-surfaces were generated at each timestep for the expanding hot gas inside 

the cylinder for the purposes of visualization. This VTK series file is labeled 

“bIso” (Figure 3). Iso-surface represents a boundary in volumetric data, 
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delineating regions with distinct value differences. In this case, the boundary is 

formed where hot gas meets cold.  

 

Figure 3. bIso expanding hot gas visualization in ParaView 

This iso-surface was used as the minimum requirement when evaluating the 

performance of algorithms during the development as it is distinctly generated 

for visualization and as the others are derived from objects directly used in the 

simulation and have excessively high polygon counts. Although bIso has less 

geometry than most others, the total data consisting of the geometry for each 

timestep along with eleven attribute arrays is still 1.54 gigabytes (billions of 

bytes).  

4 Production 

In this chapter, software design challenges, solutions to these challenges as 

well as the reasoning behind the choices made during production are explored.  
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4.1 Pipeline overview 

ParaView uses the popular open-source VTK file formats designed for 

visualizing scientific data to import data from CFD software. The “simple legacy” 

VTK format was chosen for use in the implementation of this thesis for its 

simplicity, ease of use, and information density in the binary variant.  

Loading geometry from a VTK file sequence into memory would guarantee fast 

rendering but requires the whole sequence to exist in memory which in the case 

of the sample data can be over 64GB in the worst-case scenario. This means 

that systems with less than this amount of random-access memory (RAM) 

would not be able to achieve the benefits of this approach. Considering this, 

streaming the data from files was chosen, as this avoids workarounds that 

would be needed when exceeding the system’s memory capacity. This means 

that this approach will downscale easier to lower-end devices and mainly 

depends on the capabilities of the processor and file storage medium.  

The word “streaming” in this context is used to describe the process of loading 

data into system memory only for the duration of its active use, which in this 

case is the rendering. This means that data might have to be read from a file to 

memory every single frame, overwriting the data of the previous frame. 

It is possible to stream geometry data directly from VTK files, but pre-

processing steps can be made with an intermediate format to optimize 

streaming performance. In this thesis there are two optimizations made during 

pre-processing, converting polygons into triangles and normalizing attribute 

values. Unity requires triangles for rendering and this step is best made 

beforehand and not during streaming of the geometry which would introduce 

needless overhead. Attributes are normalized to enable fast gradient sampling 

in shaders. After these steps, the geometry and attributes are written into 

individual files with a simple custom binary file format to be later streamed 

during the runtime of the visualization. These steps can be seen on the left side 

of Figure 4. These preprocessing steps will be further explored in the chapters 

below. 
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After pre-processing, information is needed on where geometry and attribute 

data for each timestep are located. For this, a single file is written containing 

this information for a given VTK file sequence, which is hereon referred to as 

the visualization object descriptor (Figure 4). This information is then passed 

onto an instance of the StreamingMeshPlayer class that handles streaming. 

 

Figure 4. Pre-processing data flow 

4.2 Pre-processing 

4.2.1 VTK file reader 

The file formats utilized for transferring data between OpenFOAM and Unity are 

VTK’s “simple legacy” formats in binary form. These are generated using 

OpenFOAM’s VTK file writer utility, foamToVTK, and are, by default, written to 

binary (20). These files must be written in binary instead of text characters 

encoded to the American Standard Code for Information Exchange (ASCII) as 

the time overhead from converting binary values to ASCII and back is too great 

for the benefits it gives in human readability. The time to access binary files can 

be 10 percent of that with ASCII as shown by Wang et al. (8, p. 22).  
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VTK also has formats based on extensible markup language (XML) and 

hierarchical data format (HDF) which are more flexible and more performant 

when best utilized, but with that comes complexity and little benefits in the 

context of this study (21). The goal is a proof-of-concept level implementation 

and supporting these formats might allow more performant streaming of 

content, but due to the development time constraints of the thesis, this is left for 

future research. An example of a VTK legacy file in the human-readable ASCII 

encoding can be seen in Figure 5. 

# vtk DataFile Version 2.0 
Cube example 
ASCII 
DATASET POLYDATA 
POINTS 8 float 
0.0 0.0 0.0 
1.0 0.0 0.0 
1.0 1.0 0.0 
0.0 1.0 0.0 
0.0 0.0 1.0 
1.0 0.0 1.0 
1.0 1.0 1.0 
0.0 1.0 1.0 
POLYGONS 6 30 
4 0 1 2 3 
4 4 5 6 7 
4 0 1 5 4 
4 2 3 7 6 
4 0 4 7 3 
4 1 2 6 5 
POINT_DATA 8 
FIELD FieldData 2 
temperature 1 8 float 
466.63 467.62 463.56 465.05 466 466.43 466.87 466.89 
pressure 1 8 float 
1.52 1.55 1.56 1.67 1.6 1.52 1.53 1.566  

Figure 5. VTK legacy file format ASCII encoded example 

The most essential sections in this project are the POINTS, POLYGONS, and 

POINT_DATA. The POINTS and POLYGONS sections form the description for 

the geometry. The POINT_DATA section provides the simulated physical 

property values for each point.  
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As said it is not ideal to encode the numbers in this way due to memory and 

computation overhead. Therefore, a copy of the Figure 5 example in this 

project’s supported binary format can be seen in Figure 6 as viewed in a text 

editor. 

# vtk DataFile Version 2.0 
Cube example 
ASCII 
DATASET POLYDATA 
POINTS 8 float 
              €?          €?  €?              €?      €?      €?      €?  €?  €?  €?      €?  €? 
POLYGONS 6 30 
                                     
POINT_DATA 8 
FIELD FieldData 2 
temperature 1 8 float 
¤PéC\ÏéC®ÇçCf†èC  éC 
7éC\oéCìqéC 
pressure 1 8 float 
\�Â?ffÆ?_®Ç?�ÂÕ?ÍÌÌ?\�Â? 
×Ã?°rÈ?  

Figure 6. VTK legacy file format binary example 

4.2.2 Attribute normalization 

Scalar and vector attribute values are normalized during the pre-processing 

step as done in the paper by Wang et al. (8, p. 11) with some notable 

differences. First, mesh normalization is not performed as the transformations of 

the objects can be controlled through the application’s UI. Second, scalar and 

vector attribute values are not converted into the 4-component Color data type 

to reduce the memory footprint of the output and enable changing the 

visualization color scheme dynamically. What enables this is a rendering 

method which will be explored further in Chapter 4.4 Rendering.  

With the example iso-surface data “bIso” with 165 meshes and a total of over 17 

million vertices each having 11 attribute values. Out of these, 10 are scalar and 

1 is of a 3-component vector type. This comes out to a total of over 227 million 

values of type float which is a 4-byte long data type, meaning a memory 
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footprint of 911.8 megabytes (MB) as in millions of bytes. If each were to be 4 

components as required by the Color data type this would be 3085.8 MB, 

meaning memory savings of just over 70% or 2 gigabytes (GB) or billions of 

bytes. 

Normalization is calculated with a simple inverse linear interpolation equation 

and is dependent only on the minimum and maximum values from the data, 

which makes it an embarrassingly parallel problem. This equation finds the 

relative position of a value within the range between the minimum and 

maximum. When the value of the attribute is of vector type, magnitude is 

calculated and given to the equation. This equation goes as follows:  

𝑣𝑣 − 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

 

In this equation, v is the value of the attribute and 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 as well as 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 are the 

minimum and maximum values, respectively, in the present data. The same 

equation with similar, but adapted naming in high-level shading language 

(HLSL) goes as follows: 

float inverseLerp(float minValue, float maxValue, float value) { 

      return (value - minValue) / (maxValue - minValue); 

} 
 

Attributes of vector type are then first normalized to have a magnitude of 1 with 

the HLSL normalize function and then component-wise multiplied by the result 

of the inverse linear interpolation equation to achieve the desired magnitude. 

4.3 Data streaming 

Visualization data streaming is achieved by first deserializing or reading the pre-

processed data for the current timestep into memory and updating graphics 

buffers that hold geometrical and attribute data which is then passed onto the 

Graphics.RenderPrimitives method (Figure 7). The Graphics.RenderPrimitives 
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method and the reasons behind its use are explored further in Chapter 4.4 

Rendering.

 

Figure 7. Flowchart visualizing the data streaming 

4.3.1 Performance requirements 

Streaming the geometry and attribute data coming from massive-scale CFD 

simulations is a major challenge. Without great optimizations reaching the 

reasonable frame rates required by an immersive platform like MR is 

impossible. Varjo strongly recommends that applications be designed to run at 
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the headset's maximum framerate of 90 frames per second (FPS) (22). For 

static scenes, it is said that 60 FPS can be sufficient for shorter durations of a 

few minutes. In terms of computation time, 60 FPS equates to approximately 

16.6 milliseconds. This time includes rendering and computation of the game 

logic from the rest of the application, so the time left for deserializing geometry 

and attributes is even less.  

To achieve these numbers, not only a performant method is needed for 

accessing the files, such as the memory-mapped file approach used by GIV   

(8, p. 21), but also the efficient parallelization enabled by this very approach. 

Memory-mapped files are a feature found in the .NET C# libraries bundled with 

Unity, which allow opening of a single file to then share it across multiple 

processes, and access it in these processes to either read or write data 

concurrently (23).  

4.3.2 Parallelization 

To parallelize reading geometry data, the task must be split into multiple tasks 

and then be executed, after which results can be collected into a single data 

object. In this implementation, the task of reading vertices and triangles is split 

individually, meaning that first vertices are read on multiple threads and then the 

same is repeated for triangles. Before splitting the reading into individual tasks 

is possible, exact byte positions and counts of the vertex and triangle sections 

in the file must be known. This is achieved by skimming the file to read only the 

metadata, after which splitting into multiple tasks is possible. 

To efficiently split the file sections of vertices and triangles the number of 

available threads on the current system is taken and this is used to divide the 

number of vertices to map start and end byte positions for each thread. Tasks 

are launched with the .NET method Parallel.ForEach and a two-dimensional 

array is passed by reference to be filled by the running tasks. The core 

elements of the implementation for reading vertices in pseudo-C# can be seen 

in Figure 8. 
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Vector3[][] vertexResults = new Vector3[SystemInfo.processorCount][]; // Vertex results 
... // Triangle results 
 
public static void DeserializeMeshNonAlloc(string filePath, ref Vector3[] vertexCache ref int[] 
triangleCache) { 
    // Read only metadata from file 
    MapFile(filePath, out long vertexCount, out long triangleCount) 
 
    verticesPerProcessor = vertexCount / SystemInfo.processorCount; 
    ... 
 
    using (var mmf = MemoryMappedFile.CreateFromFile(filePath, FileMode.Open)) { 
        // Read vertices in batches into subarrays 
        Parallel.ForEach(vertexResults, (results, index) => { 
            // Calculate start and stop index for this thread 
            startIndex = index * verticesPerProcessor; 
            stopIndex = startIndex + verticesPerProcessor; 
     
            count = stopIndex - startIndex; 
     
            using (MemoryMappedViewAccessor accessor = mmf.CreateViewAccessor()) { 
                for (int i = 0; i < count; i++) 
                { 
                    results[i].x = accessor.ReadSingle(position); 
                    results[i].y = accessor.ReadSingle(position + sizeof(float)); 
                    results[i].z = accessor.ReadSingle(position + 2 * sizeof(float)); 
                    position += 3 * sizeof(float); 
                } 
            } 
        }); 
 
        // Read triangles in batches into subarrays 
        ... 
    } 
     
    // Copy the resulting vertex subarrays into the vertex cache 
    for (int i = 0; i < SystemInfo.processorCount; i++) 
        Array.Copy(vertexResults[i], 0, vertexCache, i * verticesPerProcessor, verticesPerProcessor); 
     
    // Copy the resulting triangle subarrays into the triangle cache 
    ... 
}  

Figure 8. Pseudo-C# for parallelized reading of vertices and triangles from a 
single file 

A benchmark shows an average time save of 87.3% over a singlethreaded 

equivalent with six files consisting of widely ranging vertex and triangle counts. 
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The processor utilized for this benchmark is the AMD Threadripper PRO 

7965WX with 24 cores and 48 threads. The sample files for the benchmark 

were generated with randomized Vector3 and integer data. The files contain the 

reported number of vertices and triangles each. Samples were collected in a 

built application with Unity’s logging features disabled to avoid editor-specific 

resources and processes from interfering. The reported times are the result of 

averaging over 100 samples per file. In Figure 9 the average times are plotted 

onto a linear scale graph with the number of geometrical elements on the X axis 

and in Figure 10 the same times are plotted onto a logarithmic scale graph with 

file size on the X axis. Metric binary prefixes apply for reported file sizes. 

 

Figure 9. Benchmark results in linear scale graph and geometrical element 
count 
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Figure 10. Benchmark results in logarithmic scale graph and file size 

4.4 Rendering 

4.4.1 Environment 

In Unity, there are many rendering pipelines to choose from, the older built-in 

render pipeline and the ones deriving from scriptable render pipeline (SRP). 

SRP allows developers to create their render pipelines but is also used 

internally at Unity to create modern default pipelines, which are the universal 

render pipeline (URP) and high-definition render pipeline (HDRP). The pipeline 

chosen for this project is HDRP, as this is the render pipeline that at the writing 

of this thesis supports Varjo’s MR features such as video passthrough.  

One downside of HDRP is that URP is the more performant one out-of-the-box, 

so for a more standard 2D application, it would be the clear choice. Fortunately, 

this does not affect the relevancy of the results or CFD data pipeline 

implementation, as scripts and shaders can be reproduced in URP with little to 

no effort, for they both derive from SRP. 
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4.4.2 Implementation 

The biggest challenges in the rendering of the CFD visualization data are the 

size and frame-by-frame changing topology. This means that the data cannot 

be converted into a vertex animation due to the dynamic topology. However, in 

Unity, there are a couple of ways to approach this. The first one involves placing 

all the meshes in the scene, then enabling and disabling them one by one or 

changing the mesh on a GameObject as done by Wang et al. (8, p. 25) This is 

not ideal as this creates lots of needless memory allocations from destroying 

GameObjects which in Unity shows up as lag spikes when the C# garbage 

collector collects the now unused memory. Then there is the Graphics interface 

for Unity’s optimized drawing functions, which was chosen due to flexibility and 

performance. The function Graphics.RenderPrimitives fits the needs perfectly 

as it can simply be given geometry, a material, and a transformation matrix, 

which can all be changed in each frame without allocating unwanted memory. 

Similar functionality can be found in Graphics.RenderMesh, which would enable 

the use of Unity’s Mesh data type, but there is no way to avoid unnecessary 

memory allocation when changing the topology of the mesh. The chosen 

function RenderPrimitives is essential to the rendering performance. Therefore, 

its implementation will be explored further in the following paragraph. 

Instead of needing to modify a Unity Mesh object, for RenderPrimitives, 

references to buffers of GraphicsBuffer type can be passed, which is similar to 

an array in C# and used to transfer data between Unity’s scripting backend and 

the rendering pipeline (24). This implementation uses three buffers: one for 

triangles, one for verticeswhich only happens until the frame with the most 

items. After this, only values that are needed will be changed in the buffer which 

helps avoids garbage collection in the long run. Through RenderPrimitives, it is 

in part required that information is passed via rendering parameters. The 

required pieces of information are the material to be used and the bounds of the 

object for sorting and culling the rendered geometry (25). We can also pass a 

material property block for additional instance-specific information, and this is 

how the buffers are passed along with a gradient texture and a transformation 

matrix. Using the material property block makes the resulting draw call 
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incompatible with Unity’s scriptable render pipeline (SRP) batcher which might 

result in an impact on performance, but this is not a concern due to the small 

number of instances common in CFD. 

Attributes in traditional post-processing software are visualized using gradients 

and Unity has built-in support for their easy creation and use. As mentioned in 

the above chapters, this implementation performs the act of mapping the 

normalized attribute values to colors dynamically, and more specifically in the 

shader stage. The challenge is that Unity’s gradient data type does not have 

direct support to be passed to the vertex shader stage. Therefore, the easily 

configurable gradient data must be converted to a texture. This is accomplished 

with minimal visual and performance hit by creating a texture with a height of 1 

and a width of 32. The gradient is then sampled for each pixel with the X 

coordinate of the pixel. This texture is then passed onto the material property 

block with a SetTexture call. 

In the shader, this texture is then sampled with the value of the attribute for that 

specific vertex using a Sample Texture 2D LOD node. This is required as the 

regular Sample Texture 2D node is unavailable in the vertex shader stage, as 

the level of detail (LOD) information is unavailable and in the above-mentioned 

node this information must be provided manually. (26) 

4.5 Application 

The application developed around the visualization-enabling solution was kept 

minimal to save time for the development of the solution. Notable features of the 

application are the placing of StreamingMeshPlayers onto Varjo MR markers 

and the user interface used to expose the underlying functionality of the 

solution. 

4.5.1 User interface 

The user interface was kept as simple and reproducible as possible using 

Unity’s XR Interaction Toolkit package for handling interactions between the 
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controllers and world-space canvases holding basic Unity UI components. 

These components include a slider for timeline control, a button for triggering 

playback, and dropdown elements for various visualization settings. Hand 

controller 3D models are from Varjo’s Unity plugin.  

Upon launching the application, the user is greeted with the dynamic loading 

menu. Here the user can browse for a VTK series file or folder containing a file 

structure in the format of a VTK file sequence. Loaded sequences are then 

converted to the streamable intermediate format and will be referred to as 

visualization objects from here on out. These can then be seen in a list and a 

single global transformation offset can be set for them that applies when the 

visualization is launched. This offset is relative to the MR marker position. When 

the user is ready, the visualization can be launched by pressing the Start 

button. 

 

Figure 11. Application load menu 

Automatic looping playback starts for the visualization objects, which iterates 

over each simulation timestep over time. This playback speed is controllable, 

and the user can also scrub through the timeline of timesteps by dragging the 

XR controller’s pointer over the timeline viewport. The user can now change the 
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gradient used for each visualization object and select which physical property is 

used to calculate the surface color. 

 

Figure 12. Application MR visualization menu 

4.6 Evaluation hardware 

As performance is a great factor in this study, components with the greatest 

relevance to the benchmarks will be listed. Most important in this case is the 

central processing unit (CPU) of the computer, with logical processor count 

having a significant impact on performance, due to the file reading algorithm’s 

reliance on taking use of as many logical processors as possible. The computer 

system used for the evaluation has a 24-core, 48-thread AMD Ryzen 

Threadripper PRO 7965WX for the CPU and NVIDIA GeForce RTX 4090 for the 

graphics processing unit (GPU) which in part enables rendering the vast 

amount of geometry and attribute data common in CFD visualization to the 

Varjo XR3 Focal Edition headset. Valve Index controllers were used for hand 

interactions. Four SteamVR base stations were used for tracking, located in four 

corners of the room.  
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5 Findings 

All the objects of the real-world RCEM simulation case are successfully pre-

processed and rendered. The use and functionality of the application are 

demonstrated in Appendix 2. A benchmark on the streaming of geometrical data 

from files indicates a speed of ~1.2 gigabytes per second or a combined count 

of vertices and triangles of ~150 million per second. This means ~1.26 million 

vertices and triangles combined can be streamed in 8.3 repeating milliseconds, 

which is half of the time required to fit the minimum recommended framerate of 

60 frames per second. The optimization enabling this speed is not implemented 

for attribute streaming due to the time constraints of this thesis but is entirely 

possible, if not easier. 

Attributes are successfully rendered with performant and memory-efficient 

gradient sampling with parallelized normalization as a pre-processing step. 

Overall dynamic runtime pre-processing of VTK file sequences was achieved in 

a reasonable amount of time via parallelization of aforementioned attribute 

normalization and VTK file parsing as seen in Figure 13. 

 

Figure 13. Averaged loading and pre-processing times of visualization 
sequences in seconds 
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Essential mixed reality features, such as passthrough and marker tracking were 

successfully implemented despite the use of a lower-level graphics interface 

and custom shader implementation required for efficient rendering of the 

streamed data. The application reaches Varjo’s recommendation for minimum 

framerate in the playback of the bIso iso-surface along with the similarly sized 

sequences. Frame times were measured and averaged over 2000 samples. 

The frame times can be seen in Figure 14. However, it must be noted that bIso 

and TempIso sequences do not cover the full width of the timeline, which affects 

the averaged frame times. Therefore, values closer to those of others of similar 

size should be presumed, which can be attained from Figure 15.  

 

Figure 14. Averaged FPS reached during the playback of visualization 
sequences 
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Figure 15. Data size of pre-processed data in gigabytes 

Due to time constraints and the RCEM simulation data consisting only of the 

polygon dataset format in the “VTK simple legacy” file format, this is the only 

supported one out of the five described in the documentation. This bias towards 

the polygonal dataset format used for the development of the solution and its 

evaluation means that it is highly likely that the outcomes and optimizations in 

this thesis come from a narrow representation of the possible range of CFD 

simulation results. 

6 Conclusion 

The Unity game engine shows promise for fast development of immersive CFD 

post-processing applications but is still lacking the vast number of post-

processing features found in conventional post-processing applications. 

Building similar capabilities through an open-source repository would require a 

massive community effort from a group of developers specialized in CFD.  

This study successfully demonstrates that Unity exposes sufficient low-level 

access to rendering features for handling massive-scale polygonal CFD 

visualization datasets with a high-resolution XR headset. The game engine also 
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exposes CPU parallelization and file IO methods through .NET to optimize the 

time efficiency of data streaming and data conversions between CFD 

visualization formats and rendering-ready geometry. Geometrical data 

streaming speeds of over a gigabyte per second were measured with a 

randomized sample dataset, meaning transient multi-gigabyte dataset playback 

is possible. However, to determine this more precisely further testing is needed 

with more diverse datasets. 

Future research could investigate ways of time-efficiently downsampling the 

data during pre-processing to enable visualizing datasets of almost any size. 

Even closer to the focus of the current thesis, methods could be explored for 

directly streaming geometry and attribute data from the VTK file sequences. In 

the bigger picture of CFD post-processing in Unity, further research could focus 

on determining how CFD visualization data coming in various formats could be 

parsed into a more universal format which could then be efficiently rendered 

and post-processed.  
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Appendices 

Appendix 1. List of abbreviations 

CFD Computational Fluid Dynamics 

VTK Visualization Toolkit 

GECFD Green engine computational fluid dynamics 

VTT Technical Research Centre of Finland 

MR Mixed Reality 

AR Augmented Reality 

SOTA State-of-the-art 

CPU Central Processing Unit 

GPU Graphics Processing Unit 
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Appendix 2. Demonstrative video of the application 

Recorded on 09.12.2024. Duration of 1 minute and 57 seconds. 
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