

Aleksi Kortesalmi

Dynamic Immersive Massive-Scale
CFD Post-Processing in the Unity
Game Engine

Metropolia University of Applied Sciences

XR Design

Degree Program in Design

Thesis

December 2024

Abstract

Author: Aleksi Kortesalmi
Title: Dynamic Immersive Massive-Scale CFD Post-

Processing in the Unity Game Engine
Number of Pages: 28 pages + 2 appendices
Date: 22 December 2024

Degree: Bachelor of Culture and Arts
Degree Program: Design
Major: XR Design
Instructor: Turkka Loimisto, Senior Lecturer

Currently, neither built-in nor third-party support exists for computational fluid
dynamics (CFD) post-processing techniques or the handling of common
visualization file formats. This thesis presents a solution for visualizing massive-
scale polygonal CFD datasets in Unity. The viability of immersive massive-scale
CFD post-processing in Unity was examined through a mixed-reality application
developed around this solution utilizing near-state-of-the-art hardware and data
from a rapid compression expansion machine simulation. The performance of the
solution was measured through benchmarks and the functionality of the
application was determined through hands-on testing.

Multiple implemented optimizations are explored, including some improvements
on approaches from the literature. These include the parallelization of multiple
steps throughout the data pipeline and the use of a low-level rendering interface
of Unity.

The developed visualization solution achieves runtime data loading times ranging
from 2.9 to 47.1 seconds resulting in pre-processed transient datasets ranging in
size from 1.54 to 25.95 gigabytes. Basic post-processing techniques were
successfully implemented in the developed application. In benchmarking, the
application reached the headset’s optimal frame rate of 90 in static viewing of
individual objects and averaged a frame rate of over 58 during transient
playback.

Keywords: CFD post-processing, massive-scale, Unity game engine,
 mixed reality, visualization

This thesis has been checked using Turnitin Originality Check service.

Tiivistelmä

Tekijä: Aleksi Kortesalmi
Otsikko: Dynaaminen Massiivisen Mittakaavan Laskennallisen

Virtausdynamiikan Immersiivinen Visualisointi Unity
Pelimoottorissa

Sivumäärä: 28 sivua + 2 liitettä
Aika: 22.12.2024

Tutkinto: Muotoilun kandidaatti
Tutkinto-ohjelma: Muotoilu
Pääaine: XR Design
Ohjaaja: Lehtori Turkka Loimisto

Tällä hetkellä laskennallisen virtausdynamiikan (CFD) jälkikäsittelylle tai sen
visualisoinnin yleisille tiedostomuodoille ei ole lainkaan pelimoottorien sisäistä
eikä kolmannenkaan osapuolen tukea. Tässä opinnäytetyössä esitetään
ratkaisu massiivisen mittakaavan CFD polygonimuotoisten aineistojen
visualisointiin ja tämän päälle kehitetty sovellus näiden aineistojen
jälkikäsittelyyn yhdistetyssä todellisuudessa (MR). Unityn mahdollisuuksia CFD-
jälkikäsittelyyn selvitettiin tutkimalla ratkaisun suorituskykyä ja jälkikäsittelyä
sovellukseen onnistuneesti kehitettyjä toimintoja. Suorituskyvyn ja toimintojen
toimivuuden vahvistamiseksi hyödynnettiin visualisaatio dataa oikeasta
nopeasta puristus-laajennuskoneen (RCEM) simulaatiosta.

Opinnäytetyön projektissa esitetään monta optimisaatiota, jotka osa ovat
jatkokehitetty aiemmasta kirjallisuudesta. Optimisaatiot keskittyvät suuressa
osassa datan prosessoinnin eri vaiheiden rinnakkaislaskeistamiseen ja Unityn
matalan tason renderöinti rajapinnan hyödyntämiseen.

Käytetyn visualisointidatan eri kappaleiden ajoaikainen lataus tai esiprosessointi
mitattiin vaihtelevaksi 2.9 ja 47.1 sekunnin välillä, kun esiprosessoidun datan
suuruus vaihteli välillä 1.54 ja 25.95 gigatavua tai miljardia tavua. Keskeiset
jälkikäsittelyn toiminnot toteutettiin sovellukseen onnistuneesti. Suorituskyvyn
mittauksissa sovellus ylsi MR-lasien optimaaliseen 90 ruutua sekunnissa
nopeuteen staattisesti visualisaatiota tarkasteltaessa ja 58 keskiarvoon ajallisen
visualisointiaineiston toiston päällä ollessa.

Asiasanat: CFD-jälkikäsittely, massiivinen mittakaava, yhdistetty todellisuus,
Unity-pelimoottori, visualisaatio

Opinnäytetyön alkuperä on tarkastettu Turnitin Originality Check -ohjelmalla.

Contents

1 Introduction 1

2 Literature review 2
2.1 Background on CFD post-processing in a game engine 3
2.2 CFD simulation software 4
2.3 Choice of CFD post-processing software 4

3 Methodology 5
3.1 Simulation case 6

4 Production 7
4.1 Pipeline overview 8
4.2 Pre-processing 9

4.2.1 VTK file reader 9
4.2.2 Attribute normalization 11

4.3 Data streaming 12
4.3.1 Performance requirements 13
4.3.2 Parallelization 14

4.4 Rendering 17
4.4.1 Environment 17
4.4.2 Implementation 18

4.5 Application 19
4.5.1 User interface 19

4.6 Evaluation hardware 21

5 Findings 22

6 Conclusion 24

References 26

Appendices 30
Appendix 1. List of abbreviations 30
Appendix 2. Demonstrative video of the application 31

1

1 Introduction

This thesis was written during a traineeship at the Technical Research Centre of

Finland (VTT) as part of work in the VTT coordinated ‘Green Engine

Computational Fluid Dynamics’ (GECFD) research project. The CFD simulation

case for the evaluation of the developed solution is from Wärtsilä, a

manufacturer and service provider of equipment in the marine and energy

sectors and a participant in the GECFD project (1). In this project, a proof-of-

concept was developed to research the future of digital collaboration in CFD.

The solution presented is the groundwork for enabling fast development of the

collaboration features in the future.

The research question, “Is immersive massive-scale CFD post-processing

viable in a modern game engine” was answered through the development of a

solution that enables CFD visualization. This was then utilized to develop an

MR application with basic post-processing features to evaluate its viability

through benchmarks and observed functionality.

The phrase, “Mixed Reality” (MR) will describe the experience, as there is

interaction between the physical and digital worlds. The difference between

augmented reality and mixed reality is small. The distinction was made with

Interaction Design Foundation’s definitions where they make the distinction from

AR with the level of interaction present. Headset developer Varjo’s definition, “In

Mixed Reality, virtual objects appear as a natural part of the real world,

occluding behind real objects” is also considered.

Massive scale refers less to the “physical” scale of the simulation and more to

the amount of data that needs to be processed. In practice and in the context of

this thesis, this means high-resolution transient simulation results that can

contain anywhere from gigabytes to tens of gigabytes of data (billions of bytes).

2

2 Literature review

In this chapter, the motivations and approaches chosen for the study are

established through exploring recent literature on the topic.

CFD post-processing is the act of analyzing simulation results with purpose-built

software to obtain insights into the behavior of fluids in different environments

(2). This can involve slicing the 3D simulation domain to visualize the results on

a plane cutting into the geometry, which might provide insights that were not

visible with the original simulation geometry (Figure 1). However, the most basic

form of post-processing can be normalizing the magnitude values of a

simulation output and mapping them onto a color gradient, then displaying the

resulting color on the original simulation geometry (Figure 2).

Figure 1. Temperature visualized on a slice of RCEM cylinder internal space

3

Figure 2. ParaView gradient selection highlighted

2.1 Background on CFD post-processing in a game engine

In the paper, CFD post-processing in Unity3D Berger and Christie (3) explore

the use cases for game engine visualizations for its ease of use compared to

more conventional post-processing software like ParaView. They found this

approach can help non-expert stakeholders make informed decisions based on

representative and qualitative visualizations.

There are many ways one can connect CFD simulation software to game

engines for post-processing. The method used by Solmaz et al. (4) in their

toolkit, Acrossim focuses on a cross-platform solution for converting raw CFD

results into industry-standard formats, such as FBX. This approach is great for

already post-processed models used during the application development, but is

not as well suited, nor is it meant for runtime loading and post-processing of

CFD data.

One method for implementing dynamic post-processing inside Unity, used by

Wheeler et al. (5), is the plugin; VTKUnity-Activiz, also known as Activiz.NET,

which exposes Visualization Toolkit (VTK) functionality for Unity, but this has

many limitations (6). This plugin is a C# wrapper for VTK’s C++ functions and

4

requires its own rendering context, in OpenGL, which makes the plugin feel

poorly integrated and isolated. This limits projects utilizing it to using

OpenGLCore as their graphics API, which consequently limits XR projects to

using the Unity legacy VR support, which further limits the Unity version to the

2019 releases (6).

Weaknesses of the game engine post-processing approach are brought up by

Solmaz et al. (7) as heavy processing needs for end-user devices and the need

to implement the relevant post-processing algorithms from ground up to process

CFD datasets. The programming of algorithms for pre-processing CFD data to

game engine friendly formats remains a challenge and currently, there are no

popular solutions or libraries available for this.

This is what Wang et al. (8) did as they explored a highly integrated large-scale

dynamic post-processing solution for Unity with promising results in the field of

geotechnical engineering. Through optimizations in pre-processing and

rendering they created a lightweight solution, called GIV (9). The

implementation of this thesis utilizes many similar concepts used in GIV,

applying them to more flexible topology, MR, and building on the rendering

optimizations with Unity’s low-level mesh drawing functions.

2.2 CFD simulation software

For the CFD simulation software, OpenFOAM was used by Wärtsilä’s experts

for exporting the visualization data utilized in this study as it is in large part used

in the GECFD research project.

2.3 Choice of CFD post-processing software

OpenFOAM comes paired with ParaView, a popular open-source visualization

software (10). This is how CFD results are usually analyzed (11), in specialized

software requiring near-expert if not expert knowledge. ParaView is a powerful

and versatile tool for analyzing CFD simulation results, but its XR capabilities

are limited. In the production build of ParaView, the collaboration feature that

5

enables others on the network to view the same visualization scene only works

on Kitware’s servers, the research and development company behind the

software (12). It is possible to self-host an instance of the collaboration server,

but this requires the collaboration_server executable that might need to be built

from source code.

Extending existing features is possible as ParaView is open source but also

challenging due to relatively poor documentation on the feature and having to

work directly with low-level OpenXR or OpenVR standard application

programming interfaces (API). This is in large contrast to game engines where

software development kits (SDK) are used with a higher level of code

abstraction which speeds up development.

Game engines are built specifically for the quick development of interactive 3D

applications (13), but CFD data processing and analysis functionality must be

created from near ground up. Although popular game engines such as Unity

and Unreal Engine have invested a lot into visualization, they mostly focus on

architectural visualizations and computer-aided design (CAD) instead of CFD

(14, 15). This still means that advanced rendering tasks are possible, with the

help of low-level cross-platform interfaces, such as Unity’s Graphics interface
(16).

Unity was chosen as the game engine for this study based on personal

preference. There is also a precedent for using Unity to visualize CFD results in

MR (17) and to be capable of handling large-scale simulation data processing

by Wang et al. (8).

3 Methodology

This thesis utilizes case study as the primary research method to explore the

question: Is immersive massive-scale CFD post-processing viable within a

modern game engine?

6

A solution is developed for the basic post-processing of polygonal CFD datasets

utilizing a simple and widely supported file format. Using this solution a Unity-

based MR post-processing application is built to evaluate the capabilities of the

solution with a real-world massive-scale CFD simulation case based on a rapid

compression expansion machine (RCEM).

In practice, “immersive” in this question refers to visualizing in extended reality

(XR) environments. This is a part of the study as conventional post-processing

software is not as well equipped for developing software for immersive

environments and the promising benefits, they show in the field of visualization

(18). An example of this could be for instance overlaying CFD simulation results

on the physical object that serves as the counterpart to its digital twin in the

simulation, providing insights quickly and with great real-world context.

“Massive scale” in the context of the question defines going as close as

possible to the limit of current state-of-the-art (SOTA) hardware as a goal. The

immersive aspect in the case of the Varjo XR3 Focal Edition brings with it the

cost of rendering three additional screens.

3.1 Simulation case

To evaluate the real-world capabilities of the software, simulated data from a

rapid compression expansion machine (RCEM) was generated and exported for

visualization in the simple binary VTK format. This is explored further in the

chapters below. RCEM is a machine designed for chemical experimentation

that can quickly compress a fuel/air mixture by pushing a piston into a cylinder

and the resulting high temperatures and pressures initiate chemical reactions

(19). The expansion in RCEM means that the machine can also pull the piston

rapidly outwards to expand the gas.

Iso-surfaces were generated at each timestep for the expanding hot gas inside

the cylinder for the purposes of visualization. This VTK series file is labeled

“bIso” (Figure 3). Iso-surface represents a boundary in volumetric data,

7

delineating regions with distinct value differences. In this case, the boundary is

formed where hot gas meets cold.

Figure 3. bIso expanding hot gas visualization in ParaView

This iso-surface was used as the minimum requirement when evaluating the

performance of algorithms during the development as it is distinctly generated

for visualization and as the others are derived from objects directly used in the

simulation and have excessively high polygon counts. Although bIso has less

geometry than most others, the total data consisting of the geometry for each

timestep along with eleven attribute arrays is still 1.54 gigabytes (billions of

bytes).

4 Production

In this chapter, software design challenges, solutions to these challenges as

well as the reasoning behind the choices made during production are explored.

8

4.1 Pipeline overview

ParaView uses the popular open-source VTK file formats designed for

visualizing scientific data to import data from CFD software. The “simple legacy”

VTK format was chosen for use in the implementation of this thesis for its

simplicity, ease of use, and information density in the binary variant.

Loading geometry from a VTK file sequence into memory would guarantee fast

rendering but requires the whole sequence to exist in memory which in the case

of the sample data can be over 64GB in the worst-case scenario. This means

that systems with less than this amount of random-access memory (RAM)

would not be able to achieve the benefits of this approach. Considering this,

streaming the data from files was chosen, as this avoids workarounds that

would be needed when exceeding the system’s memory capacity. This means

that this approach will downscale easier to lower-end devices and mainly

depends on the capabilities of the processor and file storage medium.

The word “streaming” in this context is used to describe the process of loading

data into system memory only for the duration of its active use, which in this

case is the rendering. This means that data might have to be read from a file to

memory every single frame, overwriting the data of the previous frame.

It is possible to stream geometry data directly from VTK files, but pre-

processing steps can be made with an intermediate format to optimize

streaming performance. In this thesis there are two optimizations made during

pre-processing, converting polygons into triangles and normalizing attribute

values. Unity requires triangles for rendering and this step is best made

beforehand and not during streaming of the geometry which would introduce

needless overhead. Attributes are normalized to enable fast gradient sampling

in shaders. After these steps, the geometry and attributes are written into

individual files with a simple custom binary file format to be later streamed

during the runtime of the visualization. These steps can be seen on the left side

of Figure 4. These preprocessing steps will be further explored in the chapters

below.

9

After pre-processing, information is needed on where geometry and attribute

data for each timestep are located. For this, a single file is written containing

this information for a given VTK file sequence, which is hereon referred to as

the visualization object descriptor (Figure 4). This information is then passed

onto an instance of the StreamingMeshPlayer class that handles streaming.

Figure 4. Pre-processing data flow

4.2 Pre-processing

4.2.1 VTK file reader

The file formats utilized for transferring data between OpenFOAM and Unity are

VTK’s “simple legacy” formats in binary form. These are generated using

OpenFOAM’s VTK file writer utility, foamToVTK, and are, by default, written to

binary (20). These files must be written in binary instead of text characters

encoded to the American Standard Code for Information Exchange (ASCII) as

the time overhead from converting binary values to ASCII and back is too great

for the benefits it gives in human readability. The time to access binary files can

be 10 percent of that with ASCII as shown by Wang et al. (8, p. 22).

10

VTK also has formats based on extensible markup language (XML) and

hierarchical data format (HDF) which are more flexible and more performant

when best utilized, but with that comes complexity and little benefits in the

context of this study (21). The goal is a proof-of-concept level implementation

and supporting these formats might allow more performant streaming of

content, but due to the development time constraints of the thesis, this is left for

future research. An example of a VTK legacy file in the human-readable ASCII

encoding can be seen in Figure 5.

vtk DataFile Version 2.0
Cube example
ASCII
DATASET POLYDATA
POINTS 8 float
0.0 0.0 0.0
1.0 0.0 0.0
1.0 1.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
1.0 0.0 1.0
1.0 1.0 1.0
0.0 1.0 1.0
POLYGONS 6 30
4 0 1 2 3
4 4 5 6 7
4 0 1 5 4
4 2 3 7 6
4 0 4 7 3
4 1 2 6 5
POINT_DATA 8
FIELD FieldData 2
temperature 1 8 float
466.63 467.62 463.56 465.05 466 466.43 466.87 466.89
pressure 1 8 float
1.52 1.55 1.56 1.67 1.6 1.52 1.53 1.566

Figure 5. VTK legacy file format ASCII encoded example

The most essential sections in this project are the POINTS, POLYGONS, and

POINT_DATA. The POINTS and POLYGONS sections form the description for

the geometry. The POINT_DATA section provides the simulated physical

property values for each point.

11

As said it is not ideal to encode the numbers in this way due to memory and

computation overhead. Therefore, a copy of the Figure 5 example in this

project’s supported binary format can be seen in Figure 6 as viewed in a text

editor.

vtk DataFile Version 2.0
Cube example
ASCII
DATASET POLYDATA
POINTS 8 float
 €? €? €? €? €? €? €? €? €? €? €? €?
POLYGONS 6 30

POINT_DATA 8
FIELD FieldData 2
temperature 1 8 float
¤PéC\ÏéC®ÇçCf†èC éC
7éC\oéCìqéC
pressure 1 8 float
\�Â?ffÆ?_®Ç?�ÂÕ?ÍÌÌ?\�Â?
×Ã?°rÈ?

Figure 6. VTK legacy file format binary example

4.2.2 Attribute normalization

Scalar and vector attribute values are normalized during the pre-processing

step as done in the paper by Wang et al. (8, p. 11) with some notable

differences. First, mesh normalization is not performed as the transformations of

the objects can be controlled through the application’s UI. Second, scalar and

vector attribute values are not converted into the 4-component Color data type

to reduce the memory footprint of the output and enable changing the

visualization color scheme dynamically. What enables this is a rendering

method which will be explored further in Chapter 4.4 Rendering.

With the example iso-surface data “bIso” with 165 meshes and a total of over 17

million vertices each having 11 attribute values. Out of these, 10 are scalar and

1 is of a 3-component vector type. This comes out to a total of over 227 million

values of type float which is a 4-byte long data type, meaning a memory

12

footprint of 911.8 megabytes (MB) as in millions of bytes. If each were to be 4

components as required by the Color data type this would be 3085.8 MB,

meaning memory savings of just over 70% or 2 gigabytes (GB) or billions of

bytes.

Normalization is calculated with a simple inverse linear interpolation equation

and is dependent only on the minimum and maximum values from the data,

which makes it an embarrassingly parallel problem. This equation finds the

relative position of a value within the range between the minimum and

maximum. When the value of the attribute is of vector type, magnitude is

calculated and given to the equation. This equation goes as follows:

𝑣𝑣 − 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

In this equation, v is the value of the attribute and 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 as well as 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 are the

minimum and maximum values, respectively, in the present data. The same

equation with similar, but adapted naming in high-level shading language

(HLSL) goes as follows:

float inverseLerp(float minValue, float maxValue, float value) {

 return (value - minValue) / (maxValue - minValue);

}

Attributes of vector type are then first normalized to have a magnitude of 1 with

the HLSL normalize function and then component-wise multiplied by the result

of the inverse linear interpolation equation to achieve the desired magnitude.

4.3 Data streaming

Visualization data streaming is achieved by first deserializing or reading the pre-

processed data for the current timestep into memory and updating graphics

buffers that hold geometrical and attribute data which is then passed onto the

Graphics.RenderPrimitives method (Figure 7). The Graphics.RenderPrimitives

13

method and the reasons behind its use are explored further in Chapter 4.4

Rendering.

Figure 7. Flowchart visualizing the data streaming

4.3.1 Performance requirements

Streaming the geometry and attribute data coming from massive-scale CFD

simulations is a major challenge. Without great optimizations reaching the

reasonable frame rates required by an immersive platform like MR is

impossible. Varjo strongly recommends that applications be designed to run at

14

the headset's maximum framerate of 90 frames per second (FPS) (22). For

static scenes, it is said that 60 FPS can be sufficient for shorter durations of a

few minutes. In terms of computation time, 60 FPS equates to approximately

16.6 milliseconds. This time includes rendering and computation of the game

logic from the rest of the application, so the time left for deserializing geometry

and attributes is even less.

To achieve these numbers, not only a performant method is needed for

accessing the files, such as the memory-mapped file approach used by GIV

(8, p. 21), but also the efficient parallelization enabled by this very approach.

Memory-mapped files are a feature found in the .NET C# libraries bundled with

Unity, which allow opening of a single file to then share it across multiple

processes, and access it in these processes to either read or write data

concurrently (23).

4.3.2 Parallelization

To parallelize reading geometry data, the task must be split into multiple tasks

and then be executed, after which results can be collected into a single data

object. In this implementation, the task of reading vertices and triangles is split

individually, meaning that first vertices are read on multiple threads and then the

same is repeated for triangles. Before splitting the reading into individual tasks

is possible, exact byte positions and counts of the vertex and triangle sections

in the file must be known. This is achieved by skimming the file to read only the

metadata, after which splitting into multiple tasks is possible.

To efficiently split the file sections of vertices and triangles the number of

available threads on the current system is taken and this is used to divide the

number of vertices to map start and end byte positions for each thread. Tasks

are launched with the .NET method Parallel.ForEach and a two-dimensional

array is passed by reference to be filled by the running tasks. The core

elements of the implementation for reading vertices in pseudo-C# can be seen

in Figure 8.

15

Vector3[][] vertexResults = new Vector3[SystemInfo.processorCount][]; // Vertex results
... // Triangle results

public static void DeserializeMeshNonAlloc(string filePath, ref Vector3[] vertexCache ref int[]
triangleCache) {
 // Read only metadata from file
 MapFile(filePath, out long vertexCount, out long triangleCount)

 verticesPerProcessor = vertexCount / SystemInfo.processorCount;
 ...

 using (var mmf = MemoryMappedFile.CreateFromFile(filePath, FileMode.Open)) {
 // Read vertices in batches into subarrays
 Parallel.ForEach(vertexResults, (results, index) => {
 // Calculate start and stop index for this thread
 startIndex = index * verticesPerProcessor;
 stopIndex = startIndex + verticesPerProcessor;

 count = stopIndex - startIndex;

 using (MemoryMappedViewAccessor accessor = mmf.CreateViewAccessor()) {
 for (int i = 0; i < count; i++)
 {
 results[i].x = accessor.ReadSingle(position);
 results[i].y = accessor.ReadSingle(position + sizeof(float));
 results[i].z = accessor.ReadSingle(position + 2 * sizeof(float));
 position += 3 * sizeof(float);
 }
 }
 });

 // Read triangles in batches into subarrays
 ...
 }

 // Copy the resulting vertex subarrays into the vertex cache
 for (int i = 0; i < SystemInfo.processorCount; i++)
 Array.Copy(vertexResults[i], 0, vertexCache, i * verticesPerProcessor, verticesPerProcessor);

 // Copy the resulting triangle subarrays into the triangle cache
 ...
}

Figure 8. Pseudo-C# for parallelized reading of vertices and triangles from a
single file

A benchmark shows an average time save of 87.3% over a singlethreaded

equivalent with six files consisting of widely ranging vertex and triangle counts.

16

The processor utilized for this benchmark is the AMD Threadripper PRO

7965WX with 24 cores and 48 threads. The sample files for the benchmark

were generated with randomized Vector3 and integer data. The files contain the

reported number of vertices and triangles each. Samples were collected in a

built application with Unity’s logging features disabled to avoid editor-specific

resources and processes from interfering. The reported times are the result of

averaging over 100 samples per file. In Figure 9 the average times are plotted

onto a linear scale graph with the number of geometrical elements on the X axis

and in Figure 10 the same times are plotted onto a logarithmic scale graph with

file size on the X axis. Metric binary prefixes apply for reported file sizes.

Figure 9. Benchmark results in linear scale graph and geometrical element
count

17

Figure 10. Benchmark results in logarithmic scale graph and file size

4.4 Rendering

4.4.1 Environment

In Unity, there are many rendering pipelines to choose from, the older built-in

render pipeline and the ones deriving from scriptable render pipeline (SRP).

SRP allows developers to create their render pipelines but is also used

internally at Unity to create modern default pipelines, which are the universal

render pipeline (URP) and high-definition render pipeline (HDRP). The pipeline

chosen for this project is HDRP, as this is the render pipeline that at the writing

of this thesis supports Varjo’s MR features such as video passthrough.

One downside of HDRP is that URP is the more performant one out-of-the-box,

so for a more standard 2D application, it would be the clear choice. Fortunately,

this does not affect the relevancy of the results or CFD data pipeline

implementation, as scripts and shaders can be reproduced in URP with little to

no effort, for they both derive from SRP.

18

4.4.2 Implementation

The biggest challenges in the rendering of the CFD visualization data are the

size and frame-by-frame changing topology. This means that the data cannot

be converted into a vertex animation due to the dynamic topology. However, in

Unity, there are a couple of ways to approach this. The first one involves placing

all the meshes in the scene, then enabling and disabling them one by one or

changing the mesh on a GameObject as done by Wang et al. (8, p. 25) This is

not ideal as this creates lots of needless memory allocations from destroying

GameObjects which in Unity shows up as lag spikes when the C# garbage

collector collects the now unused memory. Then there is the Graphics interface

for Unity’s optimized drawing functions, which was chosen due to flexibility and

performance. The function Graphics.RenderPrimitives fits the needs perfectly

as it can simply be given geometry, a material, and a transformation matrix,

which can all be changed in each frame without allocating unwanted memory.

Similar functionality can be found in Graphics.RenderMesh, which would enable

the use of Unity’s Mesh data type, but there is no way to avoid unnecessary

memory allocation when changing the topology of the mesh. The chosen

function RenderPrimitives is essential to the rendering performance. Therefore,

its implementation will be explored further in the following paragraph.

Instead of needing to modify a Unity Mesh object, for RenderPrimitives,

references to buffers of GraphicsBuffer type can be passed, which is similar to

an array in C# and used to transfer data between Unity’s scripting backend and

the rendering pipeline (24). This implementation uses three buffers: one for

triangles, one for verticeswhich only happens until the frame with the most

items. After this, only values that are needed will be changed in the buffer which

helps avoids garbage collection in the long run. Through RenderPrimitives, it is

in part required that information is passed via rendering parameters. The

required pieces of information are the material to be used and the bounds of the

object for sorting and culling the rendered geometry (25). We can also pass a

material property block for additional instance-specific information, and this is

how the buffers are passed along with a gradient texture and a transformation

matrix. Using the material property block makes the resulting draw call

19

incompatible with Unity’s scriptable render pipeline (SRP) batcher which might

result in an impact on performance, but this is not a concern due to the small

number of instances common in CFD.

Attributes in traditional post-processing software are visualized using gradients

and Unity has built-in support for their easy creation and use. As mentioned in

the above chapters, this implementation performs the act of mapping the

normalized attribute values to colors dynamically, and more specifically in the

shader stage. The challenge is that Unity’s gradient data type does not have

direct support to be passed to the vertex shader stage. Therefore, the easily

configurable gradient data must be converted to a texture. This is accomplished

with minimal visual and performance hit by creating a texture with a height of 1

and a width of 32. The gradient is then sampled for each pixel with the X

coordinate of the pixel. This texture is then passed onto the material property

block with a SetTexture call.

In the shader, this texture is then sampled with the value of the attribute for that

specific vertex using a Sample Texture 2D LOD node. This is required as the

regular Sample Texture 2D node is unavailable in the vertex shader stage, as

the level of detail (LOD) information is unavailable and in the above-mentioned

node this information must be provided manually. (26)

4.5 Application

The application developed around the visualization-enabling solution was kept

minimal to save time for the development of the solution. Notable features of the

application are the placing of StreamingMeshPlayers onto Varjo MR markers

and the user interface used to expose the underlying functionality of the

solution.

4.5.1 User interface

The user interface was kept as simple and reproducible as possible using

Unity’s XR Interaction Toolkit package for handling interactions between the

20

controllers and world-space canvases holding basic Unity UI components.

These components include a slider for timeline control, a button for triggering

playback, and dropdown elements for various visualization settings. Hand

controller 3D models are from Varjo’s Unity plugin.

Upon launching the application, the user is greeted with the dynamic loading

menu. Here the user can browse for a VTK series file or folder containing a file

structure in the format of a VTK file sequence. Loaded sequences are then

converted to the streamable intermediate format and will be referred to as

visualization objects from here on out. These can then be seen in a list and a

single global transformation offset can be set for them that applies when the

visualization is launched. This offset is relative to the MR marker position. When

the user is ready, the visualization can be launched by pressing the Start

button.

Figure 11. Application load menu

Automatic looping playback starts for the visualization objects, which iterates

over each simulation timestep over time. This playback speed is controllable,

and the user can also scrub through the timeline of timesteps by dragging the

XR controller’s pointer over the timeline viewport. The user can now change the

21

gradient used for each visualization object and select which physical property is

used to calculate the surface color.

Figure 12. Application MR visualization menu

4.6 Evaluation hardware

As performance is a great factor in this study, components with the greatest

relevance to the benchmarks will be listed. Most important in this case is the

central processing unit (CPU) of the computer, with logical processor count

having a significant impact on performance, due to the file reading algorithm’s

reliance on taking use of as many logical processors as possible. The computer

system used for the evaluation has a 24-core, 48-thread AMD Ryzen

Threadripper PRO 7965WX for the CPU and NVIDIA GeForce RTX 4090 for the

graphics processing unit (GPU) which in part enables rendering the vast

amount of geometry and attribute data common in CFD visualization to the

Varjo XR3 Focal Edition headset. Valve Index controllers were used for hand

interactions. Four SteamVR base stations were used for tracking, located in four

corners of the room.

22

5 Findings

All the objects of the real-world RCEM simulation case are successfully pre-

processed and rendered. The use and functionality of the application are

demonstrated in Appendix 2. A benchmark on the streaming of geometrical data

from files indicates a speed of ~1.2 gigabytes per second or a combined count

of vertices and triangles of ~150 million per second. This means ~1.26 million

vertices and triangles combined can be streamed in 8.3 repeating milliseconds,

which is half of the time required to fit the minimum recommended framerate of

60 frames per second. The optimization enabling this speed is not implemented

for attribute streaming due to the time constraints of this thesis but is entirely

possible, if not easier.

Attributes are successfully rendered with performant and memory-efficient

gradient sampling with parallelized normalization as a pre-processing step.

Overall dynamic runtime pre-processing of VTK file sequences was achieved in

a reasonable amount of time via parallelization of aforementioned attribute

normalization and VTK file parsing as seen in Figure 13.

Figure 13. Averaged loading and pre-processing times of visualization
sequences in seconds

23

Essential mixed reality features, such as passthrough and marker tracking were

successfully implemented despite the use of a lower-level graphics interface

and custom shader implementation required for efficient rendering of the

streamed data. The application reaches Varjo’s recommendation for minimum

framerate in the playback of the bIso iso-surface along with the similarly sized

sequences. Frame times were measured and averaged over 2000 samples.

The frame times can be seen in Figure 14. However, it must be noted that bIso

and TempIso sequences do not cover the full width of the timeline, which affects

the averaged frame times. Therefore, values closer to those of others of similar

size should be presumed, which can be attained from Figure 15.

Figure 14. Averaged FPS reached during the playback of visualization
sequences

24

Figure 15. Data size of pre-processed data in gigabytes

Due to time constraints and the RCEM simulation data consisting only of the

polygon dataset format in the “VTK simple legacy” file format, this is the only

supported one out of the five described in the documentation. This bias towards

the polygonal dataset format used for the development of the solution and its

evaluation means that it is highly likely that the outcomes and optimizations in

this thesis come from a narrow representation of the possible range of CFD

simulation results.

6 Conclusion

The Unity game engine shows promise for fast development of immersive CFD

post-processing applications but is still lacking the vast number of post-

processing features found in conventional post-processing applications.

Building similar capabilities through an open-source repository would require a

massive community effort from a group of developers specialized in CFD.

This study successfully demonstrates that Unity exposes sufficient low-level

access to rendering features for handling massive-scale polygonal CFD

visualization datasets with a high-resolution XR headset. The game engine also

25

exposes CPU parallelization and file IO methods through .NET to optimize the

time efficiency of data streaming and data conversions between CFD

visualization formats and rendering-ready geometry. Geometrical data

streaming speeds of over a gigabyte per second were measured with a

randomized sample dataset, meaning transient multi-gigabyte dataset playback

is possible. However, to determine this more precisely further testing is needed

with more diverse datasets.

Future research could investigate ways of time-efficiently downsampling the

data during pre-processing to enable visualizing datasets of almost any size.

Even closer to the focus of the current thesis, methods could be explored for

directly streaming geometry and attribute data from the VTK file sequences. In

the bigger picture of CFD post-processing in Unity, further research could focus

on determining how CFD visualization data coming in various formats could be

parsed into a more universal format which could then be efficiently rendered

and post-processed.

26

References

1 Wärtsilä. Green engine simulation tool developed by VTT speeds up
commercialization of new technology. [Online]. 2023 [cited 2024 Dec 8].
Available from: https://www.zemecosystem.com/green-engine-
simulation- tool-developed-by-vtt-speeds-up-commercialization-of-new-
technology/.

2 Resolved Analytics. An Introduction to CFD Post-Processing. [Online].
2020 [cited 2024 Dec 7]. Available from:
https://www.resolvedanalytics.com/cfd/intro-to-cfd-post-processing.

3 Berger M, Cristie V. CFD Post-processing in Unity3D. Procedia
Computer Science. 2015 May 1; 51: p. 2913-2922.

4 Solmaz S, Van Gerven T. Acrossim: A toolkit for cross-platform
integration of CFD simulation data in computer graphics. SoftwareX.
2023 December; 24(101585).

5 Wheeler G, et. al. Virtual interaction and visualisation of 3D medical
imaging data with VTK and Unity. Healthcare Technology Letters. 2018
Aug.

6 Unity Technologies. Unity Asset Store. [Online]. 2024 [cited 2024 Dec
5]. Available from:
https://assetstore.unity.com/packages/essentials/tutorial-
projects/vtkunity-activiz-163686.

7 Solmaz S, Van Gerven T. Interactive CFD simulations with virtual reality
to support learning in mixing. Computers & Chemical Engineering. 2022
January; 156(107570).

8 Wang R, et. al. Portable interactive visualization of large-scale
simulations in geotechnical engineering using Unity3D. Advances in
Engineering Software. 2020 June; 148.

9 Github Inc. Github. [Online]. 2024 [cited 2024 Dec 5]. Available from:
https://github.com/Ron-Wang/GIV.

10 OpenCFD Ltd. OpenFOAM - 7.1 paraFoam. [Online]. 2024 [cited 2024
Dec 5]. Available from: https://www.openfoam.com/documentation/user-
guide/7-post- processing/7.1-parafoam

11 Kodman J. B. et. al. A Comprehensive Survey of Open-Source Tools for
Computational Fluid Dynamics Analyses. Journal of Advanced Research
in Fluid Mechanics and Thermal Sciences. 2024 July; 119(123-148).

https://www.zemecosystem.com/green-engine-simulation-tool-developed-by-vtt-speeds-up-commercialization-of-new-technology/
https://www.zemecosystem.com/green-engine-simulation-tool-developed-by-vtt-speeds-up-commercialization-of-new-technology/
https://www.zemecosystem.com/green-engine-simulation-tool-developed-by-vtt-speeds-up-commercialization-of-new-technology/
https://www.resolvedanalytics.com/cfd/intro-to-cfd-post-processing
https://assetstore.unity.com/packages/essentials/tutorial-projects/vtkunity-activiz-163686
https://assetstore.unity.com/packages/essentials/tutorial-projects/vtkunity-activiz-163686
https://github.com/Ron-Wang/GIV
https://www.openfoam.com/documentation/user-guide/7-post-processing/7.1-parafoam#:%7E:text=The%20main%20post-processing%20tool,an%20open-source%20visualization%20application.
https://www.openfoam.com/documentation/user-guide/7-post-processing/7.1-parafoam#:%7E:text=The%20main%20post-processing%20tool,an%20open-source%20visualization%20application.

27

12 Jakub S. ParaView Discourse. [Online]. 2021 [cited 2024 Dec 5].
Available from: https://discourse.paraview.org/t/openvr-plugin-in-
paraview- 5-8-0-pretty-much-just-works/3677/13.

13 Unity Technologies. Unity Solutions - XR. [Online]. 2024 [cited 2024 Dec
5]. Available from: https://unity.com/solutions/xr.

14 Epic Games, Inc. Unreal Engine Communities Visualization. [Online].
2024 [cited 2024 Dec 5]. Available from:
https://dev.epicgames.com/community/unreal-engine/getting-
started/visualization.

15 Unity Technologies. Unity Topics - Visualization. [Online]. 2024 [cited
2024 Dec 5]. Available from: https://unity.com/topics/3d- visualization-
explained.

16 Unity Technologies. Unity Documentation - Graphics. [Online]. 2024
[cited 2024 Dec 5]. Available from:
https://docs.unity3d.com/ScriptReference/Graphics.html.

17 Unity Technologies, Davis N,. Unity Blog - Toyota makes mixed reality
magic with Unity and Microsoft HoloLens 2. [Online]. 2020 [cited 2024
Dec 5]. Available from: https://unity.com/blog/industry/toyota-makes-
mixed-reality-magic-with-unity-and-microsoft-hololens-2.

18 Zhang Y, et al. A survey of immersive visualization: Focus on perception
and interaction. Visual Informatics. 2023 September; 7(4).

19 Werler M, et al. A Rapid Compression Expansion Machine (RCEM) for
studying chemical kinetics: Experimental principle and first applications.
[Online]. 2016 [cited 2024 Dec 5]. Available from:
https://doi.org/10.48550/arXiv.1606.06095.

20 OpenCFD Ltd. OpenFOAM Documentation - foamToVTK. [Online]. 2022
[cited 2024 Dec 5]. Available from:
https://www.openfoam.com/documentation/guides/
latest/man/foamToVTK.html.

21 VTK Developers. VTK Docs - VTK File Formats. [Online]. 2024 [cited
2024 Dec 5]. Available from:
https://docs.vtk.org/en/latest/design_documents/VTKFileFormats.html.

22 Varjo. Varjo Developer Docs - Performance. [Online]. 2024 [cited 2024
Dec 5]. Available from: https://developer.varjo.com/docs/get-
started/Performance.

https://discourse.paraview.org/t/openvr-plugin-in-paraview-5-8-0-pretty-much-just-works/3677/13
https://discourse.paraview.org/t/openvr-plugin-in-paraview-5-8-0-pretty-much-just-works/3677/13
https://unity.com/solutions/xr
https://dev.epicgames.com/community/unreal-engine/getting-started/visualization
https://dev.epicgames.com/community/unreal-engine/getting-started/visualization
https://unity.com/topics/3d-%20visualization-explained
https://unity.com/topics/3d-%20visualization-explained
https://docs.unity3d.com/ScriptReference/Graphics.html
https://unity.com/blog/industry/toyota-makes-%20mixed-reality-magic-with-unity-and-microsoft-hololens-2
https://unity.com/blog/industry/toyota-makes-%20mixed-reality-magic-with-unity-and-microsoft-hololens-2
https://doi.org/10.48550/arXiv.1606.06095
https://www.openfoam.com/documentation/guides/%20latest/man/foamToVTK.html
https://www.openfoam.com/documentation/guides/%20latest/man/foamToVTK.html
https://docs.vtk.org/en/latest/design_documents/VTKFileFormats.html
https://developer.varjo.com/docs/get-started/Performance
https://developer.varjo.com/docs/get-started/Performance

28

23 Microsoft. Learn.NET - Memory-mapped files. [Online]. 2022 [cited 2024
Dec 5]. Available from: https://learn.microsoft.com/en -
us/dotnet/standard/io/memory-mapped-files.

24 Unity Technologies. Unity Documentation - GraphicsBuffer. [Online].
2024 [cited 2024 Dec 5]. Available from:
https://docs.unity3d.com/ScriptReference/GraphicsBuffer.html.

25 Unity Technologies. Unity Documentation - RenderParams. [Online].
2024 [cited 2024 Dec 5]. Available from:
https://docs.unity3d.com/ScriptReference/RenderParams.html.

26 Unity Technologies. Unity Docs - Sample Texture 2D LOD Node.
[Online]. 2024 [cited 2024 Dec 5]. Available from:
https://docs.unity3d.com/Packages/com.unity.shadergraph@6.9/manual/
Sample-Texture-2D-LOD-Node.html.

27 OpenCFD Ltd. OpenFOAM. [Online]. 2024 [cited 2024 Dec 5]. Available
from: https://www.openfoam.com/.

28 Epic Games, Inc. Unreal Engine Documentation - ParallelFor. [Online].
2024 [cited 2024 Dec 5]. Available from:
https://dev.epicgames.com/documentation/en-us/unreal-
engine/API/Runtime/Core/Async/ParallelForImpl__ParallelForInte-.

https://learn.microsoft.com/en-us/dotnet/standard/io/memory-mapped-files
https://learn.microsoft.com/en-us/dotnet/standard/io/memory-mapped-files
https://docs.unity3d.com/ScriptReference/GraphicsBuffer.html
https://docs.unity3d.com/ScriptReference/RenderParams.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@6.9/manual/Sample-Texture-2D-LOD-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@6.9/manual/Sample-Texture-2D-LOD-Node.html
https://www.openfoam.com/
https://dev.epicgames.com/documentation/en-us/unreal-engine/API/Runtime/Core/Async/ParallelForImpl__ParallelForInte-
https://dev.epicgames.com/documentation/en-us/unreal-engine/API/Runtime/Core/Async/ParallelForImpl__ParallelForInte-

29

Appendix 1

30

Appendices

Appendix 1. List of abbreviations

CFD Computational Fluid Dynamics

VTK Visualization Toolkit

GECFD Green engine computational fluid dynamics

VTT Technical Research Centre of Finland

MR Mixed Reality

AR Augmented Reality

SOTA State-of-the-art

CPU Central Processing Unit

GPU Graphics Processing Unit

Appendix 2

31

Appendix 2. Demonstrative video of the application

Recorded on 09.12.2024. Duration of 1 minute and 57 seconds.

	1 Introduction
	2 Literature review
	2.1 Background on CFD post-processing in a game engine
	2.2 CFD simulation software
	2.3 Choice of CFD post-processing software

	3 Methodology
	3.1 Simulation case

	4 Production
	4.1 Pipeline overview
	4.2 Pre-processing
	4.2.1 VTK file reader
	4.2.2 Attribute normalization

	4.3 Data streaming
	4.3.1 Performance requirements
	4.3.2 Parallelization

	4.4 Rendering
	4.4.1 Environment
	4.4.2 Implementation

	4.5 Application
	4.5.1 User interface

	4.6 Evaluation hardware

	5 Findings
	6 Conclusion
	References
	Appendices
	Appendix 1. List of abbreviations
	Appendix 2. Demonstrative video of the application

